
Numerical Methods-Lecture IX:
Quadrature (and Markov Chains)

(See Judd Chapter 7, Stokey Lucas Prescott Chapter 11)

Trevor Gallen

Fall, 2015

1 / 40

Motivation

I E (x) =
∫∞
−∞ xf (x) for x with PDF f (x)

I Most Bellman Problems look something like:

V (x) = max
y
{φ(x , y) + βE (V (x))}

I One option is to force our probability space to be easy to use

I Another is to integrate properly (at least, within some
tolerance)

2 / 40

Easy to use probability spaces

I Markov chains are wonderfully simple

I Chapter 11 of RMED

I Allow your states to evolve stochastically, within bounds

I Summarize probability of transition as a matrix

3 / 40

Markov Chains

I We have some state (income, say) that consists of a finite
number of elements:

S = {s1, s2, ..., sn}

I We define the probability of transitioning from state i to state
j by probability πij in row i , column j :

Π =

π1→1 π1→2 · · · π1→n

π2→1 π2→2 · · · π2→n
...

...
. . .

...
πn→1 πn→2 · · · πn→n

4 / 40

Properties of Markov Chains

Π =

π1→1 π1→2 · · · π1→n

π2→1 π2→2 · · · π2→n
...

...
. . .

...
πn→1 πn→2 · · · πn→n

I All rows must add up to 1!
I If your position is summarized by row vector V , then the

probability you’ll be in each state next period is given by:

Vt+1 = VtΠ

I This is true for multiple iterations of π:

Vt+1 = VtΠ
2

I It’s easy to find the invariant distribution (if it exists) as:

lim
n→∞

VtΠ
n

5 / 40

Markov Chain: Death Example

Π =

0 0.9 0 0 0 0 0 0 0.1
0 0 0.8 0 0 0 0 0 0.2
0 0 0 0.7 0 0 0 0 0.7
0 0 0 0 0.6 0 0 0 0.6
0 0 0 0 0 0.6 0 0 0.6
0 0 0 0 0 0 0.7 0 0.7
0 0 0 0 0 0 0 0.8 0.2
0 0 0 0 0 0 0 0.7 0.3
0 0 0 0 0 0 0 0 1

I Where I interpret entries as {a1, a2, a3, a4, a5, a6, a7, a8,Death}
I Interpret

6 / 40

Markov Chain: Death Example
I Starting at

V0 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Apply Π repeatedly:

V1 = [1 0 0 0 0 0 0 0 0]

V2 = [0 0.9 0 0 0 0 0 0 0.1]

V3 = [0 0 0.63 0 0 0 0 0 0.37]

V4 = [0 0 0 0.57 0 0 0 0 0.43]

V5 = [0 0 0 0 0.56 0 0 0 0.44]

V6 = [0 0 0 0 0 0.39 0 0 0.61]

V7 = [0 0 0 0 0 0 0.24 0 0.76]

V8 = [0 0 0 0 0 0 0 0.12 0.88]

V9 = [0 0 0 0 0 0 0 0.05 0.95]

V10 = [0 0 0 0 0 0 0 0.02 0.98]

V11 = [0 0 0 0 0 0 0 0.01 0.99]
7 / 40

Markov Chain: Death Example

8 / 40

Regime Shifts
I We could also model persistent“regime shifts”

Π =

[
0.99 0.01
0.01 0.99

]

9 / 40

Sudden Brief Shocks
I We could also model sudden and brief shocks

Π =

[
0.99 0.01
0.3 0.7

]

10 / 40

Period of Uncertainty

I We could model a “time of uncertainty”

Π =

 0.99 0.01 0
0.5 0 0.5
0 0.01 0.99

I You could imagine a model of investment under uncertainty

I When in state 1 or 3, you know the deal

I If in state 2, wait to find out what state you’re in next period

11 / 40

Cyclical Behavior

I Some stochastic behavior is cyclical

Π =

0.5 0.5 0 0 0
0 0.5 0.5 0 0
0 0 0.5 0.5 0
0 0 0 0.5 0.5

0.5 0 0 0 0.5

I The real minimum wage doesn’t look dissimilar to this (if you

assign states properly)

12 / 40

Markov Chains: Summary

I Very flexible, incredibly easy to use, program, simulate

I Easy to estimate using maximum likelihood

I Good for learning problems or any regime shifting problems

I Require discrete states

I Easy to “integrate” and get probabilities

I Don’t leave home without them

13 / 40

Quadrature

I Frequently, one wants to use continuous probability
distributions

I It turns out there are a bunch of rules that get us very
accurate integrals from a finite sampling of points

I Theoretically, you all basically learned one method ∼ 5 years
ago...

14 / 40

Quadrature: Basic Idea

I Let’s say we want to integrate sin(x) over a uniform
distribution from (0, 2π)

I Take 3 points: π
3 , π, and 5

3π, assign the surrounding π
3 on

both sides to them.

15 / 40

Quadrature: Basic Idea

16 / 40

Quadrature: Basic Idea

17 / 40

Quadrature: Basic Idea

18 / 40

Quadrature: Basic Idea

19 / 40

Quadrature: Basic Idea

20 / 40

Quadrature: Basic Idea

21 / 40

Quadrature: Basic Idea

22 / 40

Quadrature: Basic Idea

23 / 40

Quadrature: Basic Idea

24 / 40

We can do better

I Two choices: where points are, and weights of points

I We chose equal weights, equidistant points

I Simpson’s rule takes better weights:

∫ b

a
f (x)dx ≈ b − a

6

(
f (a) + 4f

(
a + b

2

)
+ f (b)

)

I Break up into six points, heavily weight the middle

I This results from a quadratic approximation

I Simpson’s rule is a special case of Newton-Coates

25 / 40

Newton-Coates

I If we’re given f (x) at a series of equidistant points, but
control the weights, how well can we do?

I Trapezoid rule is as good as you’ll do with 2 equidistant
points

I Simpson’s rule is as good as you’ll do with 3 equidistant
points.

I Can look up arcane rules for higher-degree approximations

I Note that if you interpolate and integrate yourself, vulnerable
to Runge’s phenomeon

I Picking your own points and weights opens up a whole new
ballgame

26 / 40

Quadrature

I Equidistant methods can go off the rails

I Two common types of quadrature

I Clenshaw-Curtis/Fejer Quadrature: use Chebyshev points
(roots, extrema)

I There are actually three types, depending on whether you use
Chebychev roots or extrema

I Chebyshev roots (no extrema): Fejer’s first rule (we’ll do this)
I Chebyshev extrema (not including extrema): Fejer’s second

rule
I Chebyshev extrema (including extrema): Clenshaw Curtis

I Gaussian: find optimal points

I For a long time, Clenshaw-Curtis got a short shrift

I “Half as efficient”

I Trefethen (2008) suggests can be roughly just as good, given
bounds

27 / 40

Fejer’s Rule

I Fejer’s rule works with the interpolation we’ve been doing

I Integrate with Chebychev polynomials on Chebychev nodes

I This is pretty convienient if we were already interpolating
using Chebychev polynomials

I We can use a fast Fourier transform and trigonometric
definitions rather than recursive (shortcuts)

28 / 40

Everything Chebychev (for reference)
I Chebyshev points (zk):

z k = cos(([n-1:-1:0]’+0.5).*pi./n);
I Interpolation weights (ck): (Chebfun team)

y = f(z k); T = [zeros(n,1) ones(n,1)]; c = [sum(y)/n

zeros(1,n-1)]; a = 1; for k = 2:n T = [T(:,2)

a*z k.*T(:,2)-T(:,1)]; c(k) = sum(T(:,2).*y)*2/n; a=2; end a k =

c’;
I Integration weights (wk) (Waldvogel, 2006)

N=[1:2:n-1]’; l=length(N); m=n-l; K=[0:m-1]’;

v0=[2*exp(i*pi*K/n)./(1-4*K.2̂); zeros(l+1,1)];

v1=v0(1:end-1)+conj(v0(end:-1:2)); w k=ifft(v1);
I X (from a to b) → Z (from -1 to 1) transformation

Z = 2
X − a

b − a
X = a+

b − a

2
Z

I Interpolation formula

f (x) ≈
n∑

k=1

ckcos(k · arcos(x))

I Integration formula ∫ b

a
f (x)dx ≈

n∑
k=1

wk f (zk)

I See my chebfull.m and Quadrature Simple.m for an example.

29 / 40

Gaussian Quadrature

I We want:
∫ b
a f (x)

I As with interpolation, we state the problem as:∫ 1

−1
f (x)dx =

n∑
i=1

wi f (xi)

I Our choice of points and weights are determined by our
polynomials

I Several
I Gauss-Legendre (Legendre roots and polynomials)
I Chebyshev-Gauss (Chebyshev points and polynomials)
I Gauss-Hermite (Hermite roots and polynomials)
I Gauss-Jacobi (Jacobi roots and polynomials)

I Most of these are only technically difficult, not difficult to
implement once you get the formula

30 / 40

Example: sin(x) with Chebyshev-Gauss

I Formula:

∫ 1

−1

f (x)√
1 − x2

dx ≈
n∑

i=XXX

π

n
f

(
cos

(
2i − 1

2n
π

))√√√√1 −
(
cos

(
2i − 1

2n
π

)2
)

31 / 40

Example: sin(x) from 0 to pi

Note: See Quadrature.m for details. 32 / 40

Example: sin(x)

Note: See Quadrature.m for details. 33 / 40

Matlab

I There’s a new guy in town

I Don’t exert thousands of (particularly valuable) man-hours
picking the best polynomials and best points to maximize
computational efficiency and running horse races

I Nested sets of points to narrow things down is one option

I Or, zoom in on trouble spots, make a more fine approximation
there (Adaptive quadrature)

I Adaptive sparse grid interpolation

I Matlab: Sparse Grid Interpolation Toolbox by Andreas Klimke

34 / 40

Brumm & Scheidegger (2015)

35 / 40

Brumm & Scheidegger (2015)

36 / 40

Judd, Maliar, Maliar, and Valero

I Taking every point in grid is inefficient

I Good quick easy toolbox to interpolate and integrate
functions on hypercubes

I Sparse grids can allow you to up your dimensions dramatically

I What does the grid look like?

37 / 40

Judd, Maliar, Maliar, and Valero

38 / 40

Judd, Maliar, Maliar, and Valero

39 / 40

Later in the Quarter: Monte Carlo Methods

I Analytical integration isn’t always possible

I Numerical quadrature frequently focuses on and has good
properties in a few dimensions

I Monte Carlo integration has become popular

I We’ll talk about this a little later, but the idea is simple

I “Randomly”∗ walk around the space under the integral and
sample points

I Your “sample” will be representative of the “population” but
you can add it up, average it, etc.

40 / 40

