Numerical Methods-Lecture IX:
 Quadrature (and Markov Chains)

(See Judd Chapter 7, Stokey Lucas Prescott Chapter 11)

Trevor Gallen

Fall, 2015

Motivation

- $E(x)=\int_{-\infty}^{\infty} x f(x)$ for x with PDF $f(x)$
- Most Bellman Problems look something like:

$$
V(x)=\max _{y}\{\phi(x, y)+\beta E(V(x))\}
$$

- One option is to force our probability space to be easy to use
- Another is to integrate properly (at least, within some tolerance)

Easy to use probability spaces

- Markov chains are wonderfully simple
- Chapter 11 of RMED
- Allow your states to evolve stochastically, within bounds
- Summarize probability of transition as a matrix

Markov Chains

- We have some state (income, say) that consists of a finite number of elements:

$$
S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}
$$

- We define the probability of transitioning from state i to state j by probability $\pi_{i j}$ in row i, column j :

$$
\Pi=\left[\begin{array}{cccc}
\pi_{1 \rightarrow 1} & \pi_{1 \rightarrow 2} & \cdots & \pi_{1 \rightarrow n} \\
\pi_{2 \rightarrow 1} & \pi_{2 \rightarrow 2} & \cdots & \pi_{2 \rightarrow n} \\
\vdots & \vdots & \ddots & \vdots \\
\pi_{n \rightarrow 1} & \pi_{n \rightarrow 2} & \cdots & \pi_{n \rightarrow n}
\end{array}\right]
$$

Properties of Markov Chains

$$
\Pi=\left[\begin{array}{cccc}
\pi_{1 \rightarrow 1} & \pi_{1 \rightarrow 2} & \cdots & \pi_{1 \rightarrow n} \\
\pi_{2 \rightarrow 1} & \pi_{2 \rightarrow 2} & \cdots & \pi_{2 \rightarrow n} \\
\vdots & \vdots & \ddots & \vdots \\
\pi_{n \rightarrow 1} & \pi_{n \rightarrow 2} & \cdots & \pi_{n \rightarrow n}
\end{array}\right]
$$

- All rows must add up to 1 !
- If your position is summarized by row vector V, then the probability you'll be in each state next period is given by:

$$
V_{t+1}=V_{t} \Pi
$$

- This is true for multiple iterations of π :

$$
V_{t+1}=V_{t} \Pi^{2}
$$

- It's easy to find the invariant distribution (if it exists) as:

$$
\lim _{n \rightarrow \infty} V_{t} \Pi^{n}
$$

Markov Chain: Death Example

$$
\Pi=\left[\begin{array}{ccccccccc}
0 & 0.9 & 0 & 0 & 0 & 0 & 0 & 0 & 0.1 \\
0 & 0 & 0.8 & 0 & 0 & 0 & 0 & 0 & 0.2 \\
0 & 0 & 0 & 0.7 & 0 & 0 & 0 & 0 & 0.7 \\
0 & 0 & 0 & 0 & 0.6 & 0 & 0 & 0 & 0.6 \\
0 & 0 & 0 & 0 & 0 & 0.6 & 0 & 0 & 0.6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.7 & 0 & 0.7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.8 & 0.2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.7 & 0.3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

- Where I interpret entries as $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right.$, Death $\}$
- Interpret

Markov Chain: Death Example

- Starting at

$$
V_{0}=[1,0,0,0,0,0,0,0,0,0]
$$

Apply Π repeatedly:

$$
\left.\begin{array}{rl}
V_{1}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
V_{2} & =\left[\begin{array}{lllllll}
0 & 0.9 & 0 & 0 & 0 & 0 & 0
\end{array}\right) 0 \\
V_{3} & =\left[\begin{array}{llllll}
0 & 0 & 0.63 & 0 & 0 & 0
\end{array} 0\right.
\end{array}\right]
$$

Markov Chain: Death Example

Regime Shifts

- We could also model persistent "regime shifts"

$$
\Pi=\left[\begin{array}{ll}
0.99 & 0.01 \\
0.01 & 0.99
\end{array}\right]
$$

Sudden Brief Shocks

- We could also model sudden and brief shocks

$$
\Pi=\left[\begin{array}{cc}
0.99 & 0.01 \\
0.3 & 0.7
\end{array}\right]
$$

Period of Uncertainty

- We could model a "time of uncertainty"

$$
\Pi=\left[\begin{array}{ccc}
0.99 & 0.01 & 0 \\
0.5 & 0 & 0.5 \\
0 & 0.01 & 0.99
\end{array}\right]
$$

- You could imagine a model of investment under uncertainty
- When in state 1 or 3 , you know the deal
- If in state 2, wait to find out what state you're in next period

Cyclical Behavior

- Some stochastic behavior is cyclical

$$
\Pi=\left[\begin{array}{ccccc}
0.5 & 0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0.5 & 0 \\
0 & 0 & 0 & 0.5 & 0.5 \\
0.5 & 0 & 0 & 0 & 0.5
\end{array}\right]
$$

- The real minimum wage doesn't look dissimilar to this (if you assign states properly)

Markov Chains: Summary

- Very flexible, incredibly easy to use, program, simulate
- Easy to estimate using maximum likelihood
- Good for learning problems or any regime shifting problems
- Require discrete states
- Easy to "integrate" and get probabilities
- Don't leave home without them

Quadrature

- Frequently, one wants to use continuous probability distributions
- It turns out there are a bunch of rules that get us very accurate integrals from a finite sampling of points
- Theoretically, you all basically learned one method ~ 5 years ago...

Quadrature: Basic Idea

- Let's say we want to integrate $\sin (x)$ over a uniform distribution from $(0,2 \pi)$
- Take 3 points: $\frac{\pi}{3}, \pi$, and $\frac{5}{3} \pi$, assign the surrounding $\frac{\pi}{3}$ on both sides to them.

Quadrature: Basic Idea

We can do better

- Two choices: where points are, and weights of points
- We chose equal weights, equidistant points
- Simpson's rule takes better weights:

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{6}\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right)
$$

- Break up into six points, heavily weight the middle
- This results from a quadratic approximation
- Simpson's rule is a special case of Newton-Coates

Newton-Coates

- If we're given $f(x)$ at a series of equidistant points, but control the weights, how well can we do?
- Trapezoid rule is as good as you'll do with 2 equidistant points
- Simpson's rule is as good as you'll do with 3 equidistant points.
- Can look up arcane rules for higher-degree approximations
- Note that if you interpolate and integrate yourself, vulnerable to Runge's phenomeon
- Picking your own points and weights opens up a whole new ballgame

Quadrature

- Equidistant methods can go off the rails
- Two common types of quadrature
- Clenshaw-Curtis/Fejer Quadrature: use Chebyshev points (roots, extrema)
- There are actually three types, depending on whether you use Chebychev roots or extrema
- Chebyshev roots (no extrema): Fejer's first rule (we'll do this)
- Chebyshev extrema (not including extrema): Fejer's second rule
- Chebyshev extrema (including extrema): Clenshaw Curtis
- Gaussian: find optimal points
- For a long time, Clenshaw-Curtis got a short shrift
- "Half as efficient"
- Trefethen (2008) suggests can be roughly just as good, given bounds

Fejer's Rule

- Fejer's rule works with the interpolation we've been doing
- Integrate with Chebychev polynomials on Chebychev nodes
- This is pretty convienient if we were already interpolating using Chebychev polynomials
- We can use a fast Fourier transform and trigonometric definitions rather than recursive (shortcuts)

Everything Chebychev (for reference)

- Chebyshev points $\left(z_{k}\right)$:
$z_{_} k=\cos \left(\left([n-1:-1: 0]^{\prime}+0.5\right) . * p i . / n\right) ;$
- Interpolation weights $\left(c_{k}\right)$: (Chebfun team)

```
    y = f(z_k); T = [zeros(n,1) ones(n,1)]; c = [sum(y)/n
zeros(1,n-1)]; a = 1; for k = 2:n T = [T(:,2)
a*z_k.*T(:,2)-T(:,1)]; c(k) = sum( T(:,2).*y)*2/n; a=2; end a_k =
c';
```

- Integration weights (w_{k}) (Waldvogel, 2006)

```
N=[1:2:n-1]'; l=length(N); m=n-l; K=[0:m-1]';
v0=[2*exp(i*pi*K/n)./(1-4*K.\hat{2}); zeros(l+1,1)];
v1=v0(1:end-1)+conj(v0(end:-1:2)); w_k=ifft(v1);
```

- X (from a to b) $\rightarrow Z$ (from -1 to 1) transformation

$$
Z=2 \frac{X-a}{b-a} \quad X=a+\frac{b-a}{2} Z
$$

- Interpolation formula

$$
f(x) \approx \sum_{k=1}^{n} c_{k} \cos (k \cdot \operatorname{arcos}(x))
$$

- Integration formula

$$
\int_{a}^{b} f(x) d x \approx \sum_{k=1}^{n} w_{k} f\left(z_{k}\right)
$$

- See my chebfull.m and Quadrature_Simple.m for an example.

Gaussian Quadrature

- We want: $\int_{a}^{b} f(x)$
- As with interpolation, we state the problem as:

$$
\int_{-1}^{1} f(x) d x=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

- Our choice of points and weights are determined by our polynomials
- Several
- Gauss-Legendre (Legendre roots and polynomials)
- Chebyshev-Gauss (Chebyshev points and polynomials)
- Gauss-Hermite (Hermite roots and polynomials)
- Gauss-Jacobi (Jacobi roots and polynomials)
- Most of these are only technically difficult, not difficult to implement once you get the formula

Example: $\sin (x)$ with Chebyshev-Gauss

- Formula:

$$
\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x \approx \sum_{i=X X X}^{n} \frac{\pi}{n} f\left(\cos \left(\frac{2 i-1}{2 n} \pi\right)\right) \sqrt{1-\left(\cos \left(\frac{2 i-1}{2 n} \pi\right)^{2}\right)}
$$

EXAMPLE: $\sin (x)$ FROM 0 TO PI

Note: See Quadrature.m for details.

Example: $\sin (x)$

Note: See Quadrature.m for details.

Matlab

- There's a new guy in town
- Don't exert thousands of (particularly valuable) man-hours picking the best polynomials and best points to maximize computational efficiency and running horse races
- Nested sets of points to narrow things down is one option
- Or, zoom in on trouble spots, make a more fine approximation there (Adaptive quadrature)
- Adaptive sparse grid interpolation
- Matlab: Sparse Grid Interpolation Toolbox by Andreas Klimke

Brumm \& Scheidegger (2015)

Brumm \& Scheidegger (2015)

Judd, Maliar, Maliar, and Valero

- Taking every point in grid is inefficient
- Good quick easy toolbox to interpolate and integrate functions on hypercubes
- Sparse grids can allow you to up your dimensions dramatically
- What does the grid look like?

Judd, Maliar, Maliar, and Valero

Fig. 1. Smolyak grids versus a tensor-product grid.

Judd, Maliar, Maliar, and Valero

Table 1
Number of grid points: tensor-product grid with 5 points in each dimension versus Smolyak grids.

d	Tensor-product grid with 5^{d} points	Smolyak grid		
		$\mu=1$	$\mu=2$	$\mu=3$
1	5	3	5	9
2	25	5	13	29
10	9,765,625	21	221	1581
20	$95,367,431,640,625$	41	841	11,561

Later in the Quarter: Monte Carlo Methods

- Analytical integration isn't always possible
- Numerical quadrature frequently focuses on and has good properties in a few dimensions
- Monte Carlo integration has become popular
- We'll talk about this a little later, but the idea is simple
- "Randomly"* walk around the space under the integral and sample points
- Your "sample" will be representative of the "population" but you can add it up, average it, etc.

